Fast Numerical Simulation of Two-Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell
نویسندگان
چکیده
In this paper, we apply streamline-diffusion and Galerkin-least-squares finite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell (PEFC) that contains a gas channel and a gas diffusion layer (GDL). This two-phase PEFC model is typically modeled by a modified Navier-Stokes equation for the mass and momentum, with Darcy’s drag as an additional source term in momentum for flows through GDL, and a discontinuous and degenerate convectiondiffusion equation for water concentration. Based on the mixed finite element method for the modified Navier-Stokes equation and standard finite element method for water equation, we design streamline-diffusion and Galerkin-least-squares to overcome the dominant convection arising from the gas channel. Meanwhile, we employ Kirchhoff transformation to deal with the discontinuous and degenerate diffusivity in water concentration. Numerical experiments demonstrate that our finite element methods, together with these numerical techniques, are able to get accurate physical solutions with fast convergence. AMS subject classifications: 65B99, 65K05, 65K10, 65N12, 65N22, 65N30, 65N55, 65Z05
منابع مشابه
Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance
Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...
متن کاملNumerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells
In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...
متن کاملWater Management in the Cathode Side of a PEM Fuel Cell
A one dimensional isothermal mathematical modeling of cathode side of a Proton Exchange Membrane (PEM) fuel cell is developed for the water management problem. Water transport is investigated in both cathode Gas Diffusion Layer (GDL) and membrane through solving appropriate equations for fluid flow and mass transport in GDL and water transport within the membrane. The gaseous mixture flowing in...
متن کاملModeling and simulation of a new architecure stack applied on the PEM Fuel Cell
To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...
متن کاملDirect Numerical Simulation Modeling of Bilayer Cathode Catalyst Layers in Polymer Electrolyte Fuel Cells
A pore-scale description of species and charge transport through a bilayer cathode catalyst layer CL of a polymer electrolyte fuel cell using a direct numerical simulation DNS model is presented. Two realizations of the bilayer catalyst layer structure are generated using a stochastic reconstruction technique with varied electrolyte and void phase volume fractions. The DNS calculations predict ...
متن کامل